A Physical Mechanism for the Indian Summer Monsoon—Arctic Sea-Ice Teleconnection

Author:

Sundaram Suchithra,Holland David M.

Abstract

Significant changes in the Arctic climate, particularly a rapid decline of September Arctic sea ice has occurred over the past few decades. Though the exact reason for such drastic changes is still unknown, studies suggest anthropogenic drivers, natural variability of the climate system, and a combination of both as reasons. The present study focus on the influence of one of the natural variabilities of the climate system, the teleconnections associated with the Indian Summer Monsoon (ISM), and its relationship to September Arctic sea ice. Using 50 years (1951–2000) of National Center for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) NCEP/NCAR reanalysis data, APHRODITE precipitation data, Gridded Monthly Sea Ice Extent and Concentration, 1850 Onward, V2, and HadISST sea-ice concentration data, it is shown that during many strong (weak) ISM years, the Arctic sea ice increased (decreased) predominantly over the Chukchi and Beaufort Seas. The ISM plays a significant role in causing a positive (negative) North Atlantic Oscillation (NAO) during strong (weak) ISM years through the monsoon-desert mechanism associated with monsoonal heating. Simultaneously, the NAO during a strong (weak) ISM causes weakening (strengthening) of the Beaufort Sea High (BSH). The strength of the BSH modulates the Arctic atmospheric circulation, advecting cold air and the direction of the transpolar drift stream, both leading to the generation of more (less) sea ice over the Chukchi-Beaufort Sea region during strong (weak) ISM years. The study illustrates a new atmospheric teleconnection between the tropics and the Arctic.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3