The March 2012 Heat Wave in Northeast America as a Possible Effect of Strong Solar Activity and Unusual Space Plasma Interactions

Author:

Anagnostopoulos Georgios C.,Menesidou Sofia-Anna I.ORCID,Efthymiadis Dimitrios A.

Abstract

In the past two decades, the world has experienced an unprecedented number of extreme weather events, some causing major human suffering and economic damage. The March 2012 heat wave is one of the most known and broadly discussed events in the Northeast United States (NE-USA). The present study examines in depth the possible influence of solar activity on the historic March 2012 heat wave based on a comparison of solar/space and meteorological data. Our research suggests that the historic March 2012 heat wave (M2012HW) and the March 1910 heat wave (M1910HW), which occurred a century earlier in NE-USA, were related to Sun-generated special space plasma structures triggering large magnetic storms. Furthermore, the largest (Dst = −222 nT) magnetic storm during solar cycle 24 in March 2015 (only three years later than the March 2012 events) occurred in relation to another heat wave (M2015HW) in NE-USA. Both these heat waves, M2012HW and M2015HW, resemble each other in many ways: they were characterized by extremely huge temperature increases ΔΤΜ = 30° and 32° (with maximum temperatures ΤΜ = 28° and 23°, respectively) during a positive North Atlantic Oscillation index, the high temperatures coincided with large-scale warm air streaming from southern latitudes, they were accompanied by superstorms caused by unexpected geoeffective interplanetary coronal mass ejections (ICMEs), and the ICME-related solar energetic particle (SEP) events were characterized by a proton spectrum extending to very high (>0.5 GeV) energies. We infer that (i) all three heat waves examined (M2012HW, M2015HW, M1910HW) were related with strong magnetic storms triggered by effective solar wind plasma structures, and (b) the heat wave in March 2012 and the related solar activity was not an accidental coincidence; that is, the M2012HW was most probably affected by solar activity. Future case and statistical studies are needed to further check the hypothesis put forward here, which might improve atmospheric models in helping people’s safety, health and life.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3