Possible Causes of Instability of Reproduction of Heliobiological Results

Author:

Zenchenko Tatiana,Breus Tamara

Abstract

One of the main reasons why the existence of the effect of the influence of space weather on living organisms has caused skepticism among representatives of academic science for many years is the insufficient, according to the criteria of modern physics, the stability of the reproduction of the heliobiological effect. Signs of instability are the strong variability of the characteristics of the results obtained: amplitude, time lag, and even the sign of the effect. The paper formulates and substantiates the hypothesis that this instability is primarily due to methodological reasons: existing approaches, traditional for physics and biology of the XX century, are poorly suited for the study of a complex multilevel system of solar-biospheric connections. Using concrete examples, it is shown that new methodological principles, both already included in heliobiological research in the last 10 years, and newly formulated in this work, can significantly reduce the percentage of unexplained non-reproducible results. It is shown that it is necessary to take into account such specific features of the heliobiological effect as the individual nature of the reaction to space weather, the dependence of the effect on the phase of the cycle of solar and geomagnetic activity and on the sampling scale of experimental data, taking into account the possible contribution of meteorological factors, as well as the existence of different types of response of the biological system at different time scales.

Publisher

Aurora Group, s.r.o

Reference40 articles.

1. Chizhevskii A.L. Zemnoe ekho solnechnykh bur'. M.:nMysl', 1976.

2. Presman A.S. Elektromagnitnoe pole i zhivaya priroda. M.: Nauka, 1968.

3. Lednev, V.V., Belova, N.A., Rozhdestvenskaya, Z.E., Tiras, K.P. (2003). Biological effects of weak alternating magnetic fields and biological precursors of earthquakes. Geophys. Processes Biosph, 2:7–18.

4. Martynyuk, V.S., Temur’yants, N.A. (2010). Extremely low magnetic fields as a factor of modulation and synchronization of infradian biorhythms in animals. Izv. Atmos. Ocean. Phys. 46, 820–829. https://doi.org/10.1134/S0001433810070029

5. Belova, N.A., Ermakov, A.M., Znobishcheva, A.V., Serebnitskaia, L.K., Lednev, V.V. (2010). Effect of the extremely weak alternating magnetic fields on the regeneration of planarians and the gravitropic response of plants. Biofizika 55:704–709.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3