Significance of Meteorological Feature Selection and Seasonal Variation on Performance and Calibration of a Low-Cost Particle Sensor

Author:

Kumar VikasORCID,Malyan Vasudev,Sahu Manoranjan

Abstract

Poor air quality is a major environmental concern worldwide, but people living in low- and middle-income countries are disproportionately affected. Measurement of PM2.5 is essential for establishing regulatory standards and developing policy frameworks. Low-cost sensors (LCS) can construct a high spatiotemporal resolution PM2.5 network, but the calibration dependencies and subject to biases of LCS due to variable meteorological parameters limit their deployment for air-quality measurements. This study used data collected from June 2019 to April 2021 from a PurpleAir Monitor and Met One Instruments’ Model BAM 1020 as a reference instrument at Alberta, Canada. The objective of this study is to identify the relevant meteorological parameters for each season that significantly affect the performance of LCS. The meteorological features considered are relative humidity (RH), temperature (T), wind speed (WS) and wind direction (WD). This study applied Multiple Linear Regression (MLR), k-Nearest Neighbor (kNN), Random Forest (RF) and Gradient Boosting (GB) models with varying features in a stepwise manner across all the seasons, and only the best results are presented in this study. Improvement in the performance of calibration models is observed by incorporating different features for different seasons. The best performance is achieved when RF is applied but with different features for different seasons. The significant meteorological features are PM2.5_LCS in Summer, PM2.5_LCS, RH and T in Autumn, PM2.5_LCS, T and WS in Winter and PM2.5_LCS, RH, T and WS in Spring. The improvement in R2 for each season (values in parentheses) is Summer (0.66–0.94), Autumn (0.73–0.96), Winter (0.70–0.95) and Spring (0.70–0.94). This study signifies selecting the right combination of models and features to attain the best results for LCS calibration.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3