Affiliation:
1. Department of Geoinformatic Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
Abstract
Many countries use low-cost sensors for high-resolution monitoring of particulate matter (PM2.5 and PM10) to manage public health. To enhance the accuracy of low-cost sensors, studies have been conducted to calibrate them considering environmental variables. Previous studies have considered various variables to calibrate seasonal variations in the PM concentration but have limitations in properly accounting for seasonal variability. This study considered the meridian altitude to account for seasonal variations in the PM concentration. In the PM10 calibration, we considered the calibrated PM2.5 as a subset of PM10. To validate the proposed methodology, we used the feedforward neural network, support vector machine, generalized additive model, and stepwise linear regression algorithms to analyze the results for different combinations of input variables. The inclusion of the meridian altitude enhanced the accuracy and explanatory power of the calibration model. For PM2.5, the combination of relative humidity, temperature, and meridian altitude yielded the best performance, with an average R2 of 0.93 and root mean square error of 5.6 µg/m3. For PM10, the average mean absolute percentage error decreased from 27.41% to 18.55% when considering the meridian altitude and further decreased to 15.35% when calibrated PM2.5 was added.
Funder
INHA UNIVERSITY Research Grant