Controlled Laboratory Generation of Atmospheric Black Carbon Using Laser Excitation-Based Soot Generator: From Basic Principles to Application Perspectives: A Review

Author:

Ajtai Tibor,Kohut AttilaORCID,Raffai PéterORCID,Szabó Gábor,Bozóki ZoltánORCID

Abstract

The mimicking of atmospheric soot with versatile chemophysical properties is a critical issue in many applications, starting from instrument calibration, through producing aerosol standards for academic research, and ending with the reduction of uncertainties associated to carbonaceous particulate matter in the atmosphere, just to name a few. The present study deals with laser ablation as a novel and interesting technique for the generation of soot with high elementary carbon (EC) content with microphysical features similar to diesel or atmospheric soot and for modelling biomass emission under well-controlled laboratory conditions. The operation of the laser-excitation-based soot generator and the characteristics of the produced particles are compared to the most widely used techniques like flame, spark discharge generators, and real combustion soot originating from diesel- and aircraft engines or from field measurement. The comparison shows that significant differences in the physicochemical features exist between the real combustion soot and the soot originating from different excitation mechanisms. Moreover, the soot produced by different techniques shown also significant differences. However, due to some inherent and favorable attributes of the laser ablation technique—such as the possibility of the independent variation of physical characteristics of the generated soot particles—the potential for modelling biomass burning or to produce soot particles even in the accumulation mode makes it a useful tool in many cases.

Funder

Ministry of Innovation and Technology, Hungary

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3