The investigation of diesel soot emission using instrument combination of multi-wavelength photoacoustic spectroscopy and scanning mobility particle sizer

Author:

Ajtai Tibor,Utry Noémi,Pintér Máté,Rahman Abdul,Kurilla Boldizsár,Sárossy Gábor,Deák László,Baladincz Jenő,Raffai Péter,Szabó Gábor,Bozóki Zoltán

Abstract

AbstractThe parallel measurements of wavelength dependent optical absorption, particle number size distribution have made by a multi wavelength photoacoustic spectrometer (4λ-PAS) and scanning mobility particle sizer (SMPS) respectively at different modes of a diesel engine using two different types of fuel. The thermal evolution of the emission was also investigated using posterior temperature treatment of emission. The bimodal size distribution of emitted particles at a set reference temperature has been observed regardless of the applied fuel at idle. However, the emitted particulate assembly had lognormal size distribution falls into the accumulation mode at all other defined engine modes and both fuel types. The total number- and volume concentration (TNC and TVC) showed retrograde tendency with the increasing torque and rpm independently of the applied fuel types. The TNC values decreased up to 50% for both fuels with engine operation changes from idle engine mode(em#1) to low engine mode(em#2). With further increase in torque and rpm of engine, the change in TNC is negligible. On the other hand, the TVC remains more or less the same for idle to low engine mode transition and increased more than 60% for high mode (em#3) transition. The Optical Absorption Coefficient (OAC) values measured at the operational wavelengths of the 4λ-PAS instrument decreased at all wavelengths with increasing rpm and torque. The wavelength dependency quantified by Aerosol Ängström Exponent (AAE) was applied here for qualitative analysis of the carbonaceous emission and showed decreased values towards the higher engine speed and torque output of the engine. The proposed technique can be used as real-time, precise and accurate measurement of light absorption by DPM aerosols, which opens up novel possibilities for the volatility and thermal evolution investigation of diesel emissions.

Funder

University of Szeged

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3