Author:
Liu Xiaoyan,Zheng Honghui,Chen Zhenli,Jiang Yi
Abstract
A crucial and fundamental type of precipitation monitoring is the automatic observation of precipitation by ground stations. However, the typical quality control methods that are applied to rainfall present restrictions because of their discontinuities in time and space. The multi-component comprehensive consistency approach is a subjective quality control method that uses changes in other weather components associated with the precipitation process. The present study determined the reference weather components for precipitation by calculating the correlation coefficients between weather components and precipitation, and the proportions that passed the significance tests. These components included air pressure, visibility, relative humidity, wind speed, temperature difference, and the sum of cloud covers of 125–875 hPa. This study introduced various gridded fusion products to fill in the empty spaces of weather components, and put forward a scoring method to convert a subjective method into an objective method. The outcomes of the scoring method are assessed using the artificial quality control results. The evaluation’s findings demonstrate that the scoring method’s accuracy in every period of precipitation is greater than 0.75, meeting the need for objective quality control of real-time surface precipitation.
Funder
Hainan Meteorological Service
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献