A Real-Time Automated Quality Control of Hourly Rain Gauge Data Based on Multiple Sensors in MRMS System

Author:

Qi Youcun1,Martinaitis Steven1,Zhang Jian2,Cocks Stephen1

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, and NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

2. NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

Abstract Automated rain gauge networks provide direct measurements of precipitation and have been used for numerous applications, such as generating regional and national precipitation maps, calibrating remote sensing quantitative precipitation estimation (QPE), and validating hydrological and meteorological model predictions. However, automated gauge observations are prone to be affected by a variety of error sources and require a careful quality-control (QC) procedure. Many previous gauge QC techniques were based on spatiotemporal checks within the gauge network itself, and their effectiveness can be dependent on gauge densities and precipitation regimes. The current study takes advantage of the multisensor data sources in the Multi-Radar Multi-Sensor (MRMS) system and develops an automated and computationally efficient gauge QC scheme based on the consistency of hourly gauge and radar QPE observations. Radar and gauge error characteristics related to radar sampling geometry, precipitation regimes, and freezing-level height is utilized within this scheme. This QC scheme is evaluated by testing its capability to identify suspect gauges and comparing the ability to quality-controlled gauges through statistical and spatial comparisons of gauge-influenced gridded QPE products. Spatial analysis of the gridded QPE products in MRMS resulted in a more physical spatial QPE distribution using quality-controlled gauges versus the same product created with non-quality-controlled gauge data.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3