Ionospheric TEC Prediction Base on Attentional BiGRU

Author:

Lei Dongxing,Liu Haijun,Le HuijunORCID,Huang Jianping,Yuan Jing,Li Liangchao,Wang Yali

Abstract

Many studies indicated that ionospheric total electron content (TEC) prediction is vital for terrestrial and space-based radio-communication systems. In previous TEC prediction schemes based on RNN, they learn TEC representations from previous time steps, and each time-step made an equal contribution to a prediction. To overcome these drawbacks, we propose two improvements in our study: (1) To predict TEC with both past and future time-step, Bidirectional Gate Recurrent Unit (BiGRU) was presented to improve the capabilities. (2) To highlight critical time-step information, attention mechanism was used to provide weights to each time-step. The proposed attentional BiGRU TEC predicting method was evaluated on the publicly available data set from the Centre for Orbit Determination in Europe. We chose three geographical locations in low latitude, middle latitude, and high latitude to verify the performance of our proposed model. Comparative experiments were conducted using Deep Neural Network (DNN), Artificial Neural Network (ANN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Term memory (BiLSTM), and Gated Recurrent Unit (GRU). Experimental results show that the proposed Attentional BiGRU model is superior to the other models in the selected nine regions. In addition, the paper discussed the effects of latitudes and solar activities on the performance of Attentional BiGRU model. Experimental results show that the higher the latitude, the higher the prediction accuracy of our proposed model. Experimental results also show that in the middle latitude, the prediction accuracy of the model is less affected by solar activity, and in other areas, the model is greatly affected by solar activity.

Funder

the fundamental research funds for the central universities

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3