Analog and Photon Signal Splicing for CO2-DIAL Based on Piecewise Nonlinear Algorithm

Author:

Xiang Chengzhi,Liang AilinORCID

Abstract

In the CO2 differential absorption lidar (DIAL) system, signals are simultaneously collected through analog detection (AD) and photon counting (PC). These two kinds of signals have their own characteristics. Therefore, a combination of AD and PC signals is of great importance to improve the detection capability (detection range and accuracy) of CO2-DIAL. The traditional signal splicing algorithm cannot meet the accuracy requirements of CO2 inversion due to unreasonable data fitting. In this paper, a piecewise least square splicing algorithm is developed to make signal splicing more flexible and efficient. First, the lidar signal is segmented, and according to the characteristics of each signal, the best fitting parameters are obtained by using the least square fitting with different steps. Then, all the segmented and fitted signals are integrated to realize the effective splicing of the near-field AD signal and the far-field PC signal. A weight gradient strategy is also adopted in signal splicing, and the weights of the AD and PC signals in the spliced signal change with the height. The splicing effect of the improved algorithm is evaluated by the measured signal, which are obtained in Wuhan, China, and the splice of the AD and PC signals in the range of 800–1500 m are completed. Compared with the traditional method, the evaluation parameter R2 and the residual sum of squares of the spliced signal are greatly improved. The linear relationship between the AD and PC signals is improved, and the fitting R2 of differential absorption optical depth reaches 0.909, indicating that the improved signal splicing algorithm can well splice the near-field AD signal and the far-field PC signal.

Funder

Natural Science Foundation of Jiangsu Province, China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3