Analysis of Pre-Earthquake Space Electric Field Disturbance Observed by CSES

Author:

Li ZhongORCID,Yang Baiyi,Huang Jianping,Yin Huichao,Yang Xuming,Liu Haijun,Zhang Fuzhi,Lu Hengxin

Abstract

In order to explore the abnormal disturbance of the space electric field caused by earthquakes using the electric field data of the ULF and VLF frequency bands of the electric field observed by the ZH-1 satellite, and taking the Mw7.7 earthquake in the Caribbean Sea in the southern sea area of Cuba on 29 January 2020 as an example, the signal-to-noise ratio of the NAA and NLK artificial source VLF transmitting stations in the Northern Hemisphere and the height of the lower ionosphere was calculated. The disturbance of the electric field in the ULF band was extracted using the S-G filtering method. The results indicate that: (1) The ionospheric anomaly caused by this earthquake appeared 20 days before the earthquake, and before the earthquake, there were significant anomalous changes in all parameters within the pregnant seismic zone. The signal-to-noise ratios of the NAA and NLK artificial source transmitter stations decreased by 30%, and the height of the low ionosphere decreased by 5–10 km, while there were anomalous perturbations in several orbits of the ULF electric field, and the magnitude of the perturbations exceeded three times the standard deviation. (2) The SNR of the artificial source transmitting stations before and after the earthquake was significantly reduced in the third period before the earthquake and recovered after the earthquake. (3) The low ionospheric height appears to be reduced before the earthquake and recovers after the earthquake. (4) The decrease in the S/N ratio occurred simultaneously with the decrease in ionospheric height 15 days–10 days before the earthquake. This provides a reference for extracting pre-earthquake ionospheric precursor anomalies.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference28 articles.

1. A list of deadly earthquakes in the world: 1500–2000;Utsu;Int. Geophys.,2002

2. Seismo-electromagnetism precursor research progress;Ding;Chin. J. Radio Sci.,2006

3. Preliminary Studies on Seismo-ionospheric Phenomena;He;Earthq. Res. China,2020

4. Experimental measurement of electromagnetic emissions possibly related to earthquakes in Japan

5. Ionosphere VLF electric field anomalies before Wenchuan M 8 earthquake;Zhang;Chin. J. Radio Sci.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3