Observational Analyses of Dry Intrusions and Increased Ozone Concentrations in the Environment of Wildfires

Author:

Georgiev Christo G.,Tjemkes Stephen A.,Karagiannidis AthanasiosORCID,Prieto Jose,Lagouvardos Konstantinos

Abstract

In this study, atmospheric dynamical processes, which govern the intensification of wildfire activity and the associated increase in low-level ozone concentrations, were studied using images, advanced products and vertical profiles derived from satellite observations. The analyses confirm that the influence of deep stratospheric intrusions, identified in the satellite water vapor imagery, on a fire-risk area contributes to the increase in fire activity. The depth of dry stratospheric intrusions, the associated synoptic evolution and the enhanced low-level ozone concentrations caused by vertical transport of stratospheric air and/or related to biomass burning emissions were analyzed using satellite measurements from SEVIRI, IASI and CrIS instruments, complemented with surface observations near the wildfires’ locations. It is shown that the spatial and vertical resolutions of these soundings provide a way of identifying areas of enhanced ozone downwind of wildfires. Influences of the upper-troposphere dynamics and the wind field evolution as factors of uncertainty and complexity in studying the ozone production from wildfire emissions are considered. The combination of satellite soundings and satellite estimations of fire radiative energy and WV imagery may contribute to better understand the ozone enhancement associated with stratospheric intrusion and wildfire emissions.

Funder

European Organisation for the Exploitation of Meteorological Satellites

European Union

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3