Synoptic and Mesoscale Aspects of Exceptional Fire Weather during the New Year Period 2019–20 in Southeastern New South Wales, Australia

Author:

Fox-Hughes Paul1

Affiliation:

1. a Bureau of Meteorology, Hobart, Tasmania, Australia

Abstract

Abstract Extreme fire weather and fire behavior occurred during the New Year’s Eve period 30–31 December 2019 in southeast New South Wales, Australia. Fire progressed rapidly during the late evening and early morning periods, and significant extreme pyrocumulonimbus behavior developed, sometimes repeatedly in the same area. This occurred within a broader context of an unprecedented fire season in eastern Australia. Several aspects of the synoptic and mesoscale meteorology are examined, to identify contributions to fire behavior during this period. The passage of a cold front through the region was a key factor in the event, but other processes contributed to the severity of fire weather. Additional important features during this period included the movement of a negatively tilted upper-tropospheric trough, the interaction of the front with topography, and the occurrence of low-level overnight jets and of horizontal boundary layer rolls in the vicinity of the fireground. Significance Statement Wildfires and the weather that promotes their ignition and spread are a threat to communities and natural values globally, even in fire-adapted landscapes such as the western United States and Australia. In particular, savanna in the north of Australia regularly burns during the dry season while forest and grassland in the south burn episodically, mostly during the summer. Here, we examine the weather associated with destructive fires that occurred in southeast New South Wales, Australia, in late 2019. Weather and climate factors at several scales interacted to contribute to fire activity that was unusually dangerous. For meteorologists and emergency managers, case studies such as this are valuable to highlight conditions that may lead to future similar events. This case study also identified areas where improvements in fire weather service can be made, including the incorporation of more detailed weather information into models of fire behavior.

Funder

Australian Climate Service

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference50 articles.

1. Global climatology of synoptically‐forced downslope winds;Abatzoglou, J. T.,2021

2. Connections of climate change and variability to large and extreme forest fires in southeast Australia;Abram, N. J.,2021

3. Influence of the Indian Ocean dipole on the Australian winter rainfall;Ashok, K.,2003

4. Unprecedented smoke‐related health burden associated with the 2019–20 bushfires in eastern Australia;Borchers Arriagada, N.,2020

5. Bureau National Operations Centre, 2016: APS2 upgrade to the ACCESS-G Numerical Weather Prediction System. BNOC Operations Bull. 105, 32 pp., http://www.bom.gov.au/australia/charts/bulletins/APOB105.pdf.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3