Rapid Sampling Protocol of Isoprene Emission Rate of Palm (Arecaceae) Species Using Excised Leaves

Author:

Chang Ting-Wei,Okamoto Hiroshi,Tani Akira

Abstract

The high isoprene emission capacity of palm species can decrease regional air quality and enhance the greenhouse effect when land is converted to palm plantations. Propagation of low-emitting individuals can be a strategy for reducing isoprene emission from palms. However, the identification of low-emitting individuals requires large-scale sampling. Thus, we aimed to develop a rapid method in which the isoprene emission rate of leaf segments is observed. We examined the temperature response and effect of incubation length on the isoprene emission rate of palm leaf and found that leaf temperatures at 25 to 30 °C and an incubation length of 40 min are suitable parameters. To further examine the validity of the method, we applied both the enclosure method and this method to the same sections of leaves. High coefficient of determinations (0.993 and 0.982) between the results of the two methods were detected regardless of seasonal temperature. This result proves that the method is capable of measuring the isoprene emission rate under any growth conditions if the incubation temperature is controlled. By using a water bath tank and a tested light source, we can simply implement a unified environmental control of multiple samples at once, which achieves a higher time efficiency than conventional enclosure measurements.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3