Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set for 1970–2012
-
Published:2017-06-26
Issue:12
Volume:17
Page:7683-7701
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Huang Ganlin, Brook Rosie, Crippa Monica, Janssens-Maenhout GreetORCID, Schieberle Christian, Dore Chris, Guizzardi Diego, Muntean Marilena, Schaaf Edwin, Friedrich Rainer
Abstract
Abstract. Non-methane volatile organic compounds (NMVOCs) include a large number of chemical species which differ significantly in their chemical characteristics and thus in their impacts on ozone and secondary organic aerosol formation. It is important that chemical transport models (CTMs) simulate the chemical transformation of the different NMVOC species in the troposphere consistently. In most emission inventories, however, only total NMVOC emissions are reported, which need to be decomposed into classes to fit the requirements of CTMs. For instance, the Emissions Database for Global Atmospheric Research (EDGAR) provides spatially resolved global anthropogenic emissions of total NMVOCs. In this study the EDGAR NMVOC inventory was revised and extended in time and in sectors. Moreover the new version of NMVOC emission data in the EDGAR database were disaggregated on a detailed sector resolution to individual species or species groups, thus enhancing the usability of the NMVOC emission data by the modelling community. Region- and source-specific speciation profiles of NMVOC species or species groups are compiled and mapped to EDGAR processes (detailed resolution of sectors), with corresponding quality codes specifying the quality of the mapping. Individual NMVOC species in different profiles are aggregated to 25 species groups, in line with the common classification of the Global Emissions Initiative (GEIA). Global annual grid maps with a resolution of 0.1° × 0.1° for the period 1970–2012 are produced by sector and species. Furthermore, trends in NMVOC composition are analysed, taking road transport and residential sources in Germany and the United Kingdom (UK) as examples.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference41 articles.
1. Cai, C., Geng, F., Tie, X., Yu, Q., and An, J.: Characteristics and source apportionment of VOCs measured in Shanghai, China, Atmos. Environ., 44, 5005–5014, https://doi.org/10.1016/j.atmosenv.2010.07.059, 2010. 2. Cai, H. and Xie, S. D.: Tempo-spatial variation of emission inventories of speciated volatile organic compounds from on-road vehicles in China, Atmos. Chem. Phys., 9, 6983–7002, https://doi.org/10.5194/acp-9-6983-2009, 2009. 3. Carter, W. P. L.: Development of a database for chemical mechanism assignments for volatile organic emissions, J. Air Waste Manage. Assoc., 65, 1171–1184, https://doi.org/10.1080/10962247.2015.1013646, 2015. 4. Chan, L.-Y., Chu, K.-W., Zou, S.-C., Chan, C.-Y., Wang, X.-M., Barletta, B., Blake, D. R., Guo, H., and Tsai, W.-Y.: Characteristics of nonmethane hydrocarbons (NMHCs) in industrial, industrial-urban, and industrial-suburban atmospheres of the Pearl River Delta (PRD) region of south China, J. Geophys. Res., 111, D11304, https://doi.org/10.1029/2005JD006481, 2006. 5. Coll, I., Rousseau, C., Barletta, B., Meinardi, S., and Blake, D. R.: Evaluation of an urban NMHC emission inventory by measurements and impact on CTM results, Atmos. Environ., 44, 3843–3855, https://doi.org/10.1016/j.atmosenv.2010.05.042, 2010.
Cited by
141 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|