Detailed Carbon Isotope Study of PM2.5 Aerosols at Urban Background, Suburban Background and Regional Background Sites in Hungary

Author:

Major IstvánORCID,Molnár MihályORCID,Futó István,Gergely Virág,Bán SándorORCID,Machon Attila,Salma ImreORCID,Varga Tamás

Abstract

The aim of this study was to estimate and refine the potential sources of carbon in the atmospheric PM2.5 fraction aerosol at three sampling sites in Hungary. Quantification of total, organic and elemental carbon (TC, OC and EC, respectively), as well as radiocarbon (14C) and stable carbon isotope analyses were performed on exposed filters collected at an urban background site, a suburban background site of the capital of Hungary, Budapest from October 2017 to July 2018. Results were also collected from the rural regional background site of K-puszta. Compared to TC concentrations from other regions of Europe, the ratio of the lowest and highest values at all sites in Hungary are lower than these European locations, probably due to the specific meteorological conditions prevailing in the Carpathian Basin over the observation period. The concentration of OC was constantly higher than that of EC and a seasonal variation with higher values in the heating period (October–March) and lower values in the non-heating vegetation period (April–September) could be observed for both EC and OC fractions. Using 14C, the seasonal mean fraction of contemporary carbon (fC) within the TC varied between 0.50 and 0.78 at the sites, suggesting that modern sources were remarkable during the year, regardless of the heating or vegetation period. At the two urban sites, assuming constant industrial emission during the year, the fossil fuel combustion sources were responsible for the seasonal variation of EC, while modern carbon emissions from biomass-burning and biogenic sources influenced the OC concentration. The higher EC/TC ratios at these sites were associated with lower fC and δ13C values, which can be explained by soot emission from transportation. The notably high EC/TC ratios in the spring were likely caused by the reduced concentration of OC instead of increased EC concentrations. This could probably be caused by the ending of winter biomass burning, which emits a huge amount of OC into the atmosphere. On the contrary, the rural K-puszta site showed some differences relative to the sites in Budapest. No correlation could be revealed between the EC/TC ratio, fC and δ13C results, suggesting that the structure of sources was very stagnant and balanced in each season. In autumn, however, some less depleted values were observed, and agricultural corn-stalk burning after harvesting in the southern and eastern directions from Hungary can be suggested as the main source.

Funder

European Regional Development Fund

Hungarian Research, Development and Innovation Office

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3