Characterization of the PM2.5 aerosol fraction monitored at a suburban site in south-eastern Italy by integrating isotopic techniques and ion beam analysis

Author:

Romano Salvatore,Pichierri Susy,Fragola Mattia,Buccolieri Alessandro,Quarta Gianluca,Calcagnile Lucio

Abstract

Both teflon and quartz PM2.5 filters collected from January to July 2021 at the monitoring site of the Department of Mathematics and Physics of the University of Salento in Lecce (Italy) were analyzed by integrating different characterization techniques (Particle Induced X-ray Emission PIXE, Isotope Ratio Mass Spectrometry IRMS, and Accelerator Mass Spectrometry AMS) at the CEDAD (Center of Applied Physics, Dating and Diagnostics) of the Department of Mathematics and Physics, University of Salento. The PM2.5 concentration analyses allowed to identify the variation of the main PM2.5 characteristics as a function of the season and the day of the week. This last characterization was integrated by the results from the PIXE, which allowed to identify the heavy elements and their concentrations. The main results showed the presence of different elements, such as S and Zn (considered as markers of anthropogenic sources for PM2.5) and Ca and Fe (as markers of natural sources). The concentrations of these elements showed a significant decrease during the weekend, mostly in the case of elements of anthropogenic origin, according to the data on the PM2.5 temporal evolution. Using the isotopic markers of carbon and nitrogen by means of the IRMS, we determined values of δ15N between 4.5 and 10.6‰, which are consistent with the origin of PM2.5 from anthropic combustion processes and a secondary contribution from vehicular traffic. Similarly, the values of δ13C obtained by IRMS were in the range between −24.4 and −26.7‰, generally associated with biomass combustion and with vehicular traffic. An analysis of the fossil and modern contribution was carried out on the PM2.5 filters by measuring radiocarbon using the integrated IRMS-EA system connected with the TANDETRON accelerator and AMS spectrometer. In more detail, we found a percentage of modern carbon in the range 71.6–92.4% that indicates a larger bio-derived contribution with respect to the contribution from fossil sources during the analyzed period. The parameters obtained from PIXE, IRMS, and AMS techniques were finally used as input for different ordination methods that allowed their deeper characterization.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Istituto Nazionale di Fisica Nucleare

Regione Puglia

Publisher

Frontiers Media SA

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3