Probability Forecasting of Short-Term Short-Duration Heavy Rainfall Combining Ingredients-Based Methodology and Fuzzy Logic Approach

Author:

Tian FuyouORCID,Zhang Xiaoling,Xia KunORCID,Sun JianhuaORCID,Zheng Yongguang

Abstract

Highly convection-related short-duration heavy rainfall (SDHR), defined as rainfall greater than 20 mm h−1 of a whole hour, causes severe damage every year in China. An objective forecasting method is developed to provide guidance products for the short-term probability of SDHR. Representative parameters of environmental moisture content, instability, and dynamical forcing are selected as predictors based on the ingredients-based methodology. The predictors are selected by comparing their ability to discriminate between SDHR and both no rainfall and ordinary rainfall with hourly rainfall records and the NCEP reanalysis dataset during the warm seasons of 2002 and 2009. A fuzzy logic approach is obtained for the calculation of SDHR probability. Intervals of intensities are obtained based on specific percentiles and various weight settings examined. The probabilistic SDHR forecasts during the 2015 warm seasons with the NCEP GFS dataset are obtained, and forecasts are evaluated by using an operational used spatial verification method. Results show that the reference operational SDHR forecasts are surpassed by the 00–12 h period objective SDHR forecasts measured with the maximum critical success index (CSI), and even the average CSI (CSIave) for the top groups is better than the reference. The guidance SDHR products are skillful within 60 h. Although the weights vary significantly, the short-term patterns of the SDHR probability are mainly determined by the environmental conditions. The objective forecasting method is ingredients-based but is combined with fuzzy logic algorithms. The new approach provides a feasible exploration of the convective weather phenomenon.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3