Synoptic Situations of Extreme Hourly Precipitation over China

Author:

Luo Yali1,Wu Mengwen2,Ren Fumin3,Li Jian3,Wong Wai-Kin4

Affiliation:

1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

2. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, and University of Chinese Academy of Sciences, Beijing, China

3. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China

4. Hong Kong Observatory, Hong Kong, China

Abstract

Abstract In this study, synoptic situations associated with extreme hourly precipitation over China are investigated using rain gauge data, weather maps, and composite radar reflectivity data. Seasonal variations of hourly precipitation (>0.1 mm h−1) suggest complicated regional features in the occurrence frequency and intensity of rainfall. The 99.9th percentile is thus used as the threshold to define the extreme hourly rainfall for each station. The extreme rainfall is the most intense over the south coastal areas and the North China Plain. About 77% of the extreme rainfall records occur in summer with a peak in July (30.4%) during 1981–2013. Nearly 5800 extreme hourly rainfall records in 2011–15 are classified into four types according to the synoptic situations under which they occur: the tropical cyclone (TC), surface front, vortex/shear line, and weak-synoptic forcing. They contribute 8.0%, 13.9%, 39.1%, and 39.0%, respectively, to the total occurrence and present distinctive characteristics in regional distribution and seasonal or diurnal variations. The TC type occurs most frequently along the coasts and decreases progressively toward inland China; the frontal type is distributed relatively evenly east of 104°E; the vortex/shear line type shows a prominent center over the Sichuan basin with two high-frequency bands extending from the center southeastward and northeastward, respectively; and the weak-synoptic type occurs more frequently in southeast, southwest, and northern China, and in the easternmost area of northeast China. Occurrences of the weak-synoptic type have comparable contributions from mesoscale convective systems and smaller-scale storms with notable differences in their preferred locations.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3