Simulation of the Formation and Growth of Soot Aerosol Particles in a Premixed Combustion Process Using a Soot Aerosol Dynamics Model

Author:

Park Sung Hoon

Abstract

Recently, an aerosol dynamics model—the Soot Aggregate Moment Model (SAMM)—that can efficiently trace the size distribution and morphology of soot particles was developed. In order to examine the applicability of SAMM in association with open-source CFD and combustion chemistry solvers, the formation and growth of soot particles in a premixed ethylene/air combustion were simulated by connecting SAMM with OpenSMOKE++ in this study. The simulation results were compared with available measurements and with the results of a previous study conducted using SAMM connected with an in-house CFD code and the CHEMKIN combustion chemistry package. Both CHEMKIN and OpenSMOKE++ underestimated C2H2 concentration compared to previous measurements, with deviation from the measured data being smaller for OpenSMOKE++. The chemical mechanism adopted in the CHEMKIN package was found to underestimate pyrene concentration by a factor of several tens. OpenSMOKE++ predicted much higher soot precursor concentrations than CHEMKIN, leading to a higher nucleation rate and a faster surface growth in the latter part of the reactor. This resulted in a reasonable soot production rate without introducing an artificial condensation enhancement factor. The overestimation of low-molecular-weight polycyclic aromatic hydrocarbons in the latter part of the reactor and the neglect of sintering led to an overprediction of soot production and primary particle number. This result indicates that accounting only for obliteration without sintering in SAMM could not simulate the merging of primary particles sufficiently. This indication merits further investigation.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3