The Impact of Intra-Seasonal Oscillation on Westward Track Deflection of Super Typhoon Fitow (2013)

Author:

Bi Xinxin,Chen Guanghua,Zhou Weican

Abstract

Typhoon Fitow (2013) took an unusual westward track deflection after a lengthy northward movement over the western North Pacific (WNP). Based on observation and wave analysis, it is found that the track deflection of Fitow is attributed to the transition of environmental flow from meridional to zonal orientation, which is closely associated with a low-frequency intra-seasonal oscillation (ISO). Furthermore, the impact of ISO on tropical cyclone (TC) unusual movement is investigated using the Advanced Research version of Weather Research and Forecasting (WRF-ARW) model. The control simulation (CTL) reproduces well the synoptic pattern and track deflection of the TC. The TC moves straightly westward and northwestward without track deflection in the sensitivity experiments with the removal of total ISOs and the west-propagating ISO component, while keeping the recurving track with the removal of east-propagating ISO, which suggests that the west-propagating ISO plays a dominant role in the westward track deflection. In the experiment of removing west-propagating ISOs, an anomalous southeast–northwest-oriented wave train around the TC is modified, the mid-latitude trough decays, and the enhanced zonally elongated subtropical high is responsible for the straight northwestward motion of the TC. However, after removing a weaker convection anomaly associated with east-propagating ISOs in the form of a southwest–northeast oriented dipole circulation, the TC is affected by a sustained shallow mid-latitude trough and a west-extended ridge of subtropical high to keep the cyclonic track turning analogous to the counterpart in CTL. The piecewise potential vorticity inversion diagnosis further assesses the contribution of the different ISO components to TC track deflection.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3