Spatial Downscaling of GOES-R Land Surface Temperature over Urban Regions: A Case Study for New York City

Author:

Bah Abdou RachidORCID,Norouzi HamidrezaORCID,Prakash SatyaORCID,Blake Reginald,Khanbilvardi Reza,Rosenzweig Cynthia

Abstract

The surface urban heat island (SUHI) effect is among the major environmental issues encountered in urban regions. To better predict the dynamics of the SUHI and its impacts on extreme heat events, an accurate characterization of the surface energy balance in urban regions is needed. However, the ability to improve understanding of the surface energy balance is limited by the heterogeneity of surfaces in urban areas. This study aims to enhance the understanding of the urban surface energy budget through an innovation in the use of land surface temperature (LST) observations from remote sensing satellites. A LST database with 5–min temporal and 30–m spatial resolution is developed by spatial downscaling of the Geostationary Operational Environmental Satellites—R (GOES–R) series LST product over New York City (NYC). The new downscaling method, known as the Spatial Downscaling Method (SDM), benefits from the fine spatial resolution of Landsat–8 and high temporal resolution of GOES–R, and considers the temporal variation in LST for each land cover type separately. Preliminary results show that the SDM can reproduce the temporal and spatial variability of LST over NYC reasonably well and the downscaled LST has a spatial root mean square error (RMSE) of the order of 2 K as compared to the independent Landsat–8 observations. The SDM shows smaller RMSE of 1.93 K over the tree canopy land cover, whereas RMSE is 2.19 K for built–up areas. The overall results indicate that the SDM has potential to estimate LST at finer spatial and temporal scales over urban regions.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3