Global Patterns of Hottest, Coldest, and Extreme Diurnal Variability on Earth

Author:

Zhao Yunxia1,Norouzi Hamid2,Azarderakhsh Marzi3,AghaKouchak Amir4

Affiliation:

1. Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California

2. New York City College of Technology, City University of New York, Brooklyn, New York

3. School of Computer Science and Engineering, Fairleigh Dickinson University, Teaneck, New Jersey

4. Department of Civil and Environmental Engineering, and Department of Earth System Science, University of California, Irvine, Irvine, California

Abstract

ABSTRACTMost previous studies of extreme temperatures have primarily focused on atmospheric temperatures. Using 18 years of the latest version of the Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) data, we globally investigate the spatial patterns of hot and cold extremes as well as diurnal temperature range (DTR). We show that the world’s highest LST of 80.8°C, observed in the Lut Desert in Iran and the Sonoran Desert in Mexico, is over 10°C above the previous global record of 70.7°C observed in 2005. The coldest place on Earth is Antarctica with the record low temperature of −110.9°C. The world’s maximum DTR of 81.8°C is observed in a desert environment in China. We see strong latitudinal patterns in hot and cold extremes as well as DTR. Biomes worldwide are faced with different levels of temperature extremes and DTR: we observe the highest zonal average maximum LST of 61.1° ± 5.3°C in the deserts and xeric shrublands; the lowest zonal average minimum LST of −66.6° ± 14.8°C in the tundra; and the highest zonal average maximum DTR of 43.5° ± 9.9°C in the montane grasslands and shrublands. This global exploration of extreme LST and DTR across different biomes sheds light on the type of extremes different ecosystems are faced with.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3