Improving the Performance of Pipeline Leak Detection Algorithms for the Mobile Monitoring of Methane Leaks

Author:

Xia TianORCID,Raneses Julia,Batterman Stuart

Abstract

Methane (CH4) is the major component of natural gas, a potent greenhouse gas, and a precursor for the formation of tropospheric ozone. Sizable CH4 releases can occur during gas extraction, distribution, and use, thus, the detection and the control of leaks can help to reduce emissions. This study develops, refines, and tests algorithms for detecting CH4 peaks and estimating the background levels of CH4 using mobile monitoring, an approach that has been used to determine the location and the magnitude of pipeline leaks in a number of cities. The algorithm uses four passes of the data to provide initial and refined estimates of baseline levels, peak excursions above baseline, peak locations, peak start and stop times, and indicators of potential issues, such as a baseline shift. Peaks that are adjacent in time or in space are merged using explicit criteria. The algorithm is refined and tested using 1-s near-ground CH4 measurements collected on 20 days while driving about 1100 km on surface streets in Detroit, Michigan by the Michigan Pollution Assessment Laboratory (MPAL). Sensitivity and other analyses are used to evaluate the effects of each parameter and to recommend a parameter set for general applications. The new algorithm improves the baseline estimates, increases sensitivity, and more consistently merges nearby peaks. Comparisons of two data subsets show that results are repeatable and reliable. In the field study application, we detected 534 distinct CH4 peaks, equivalent to ~0.5 peaks per km traveled; larger peaks detected at nine locations on multiple occasions suggested sizable pipeline leaks or possibly other CH4 sources.

Funder

State of Michigan

National Institute of Environmental Health Sciences

Environmental Protection Agency

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference32 articles.

1. Global CH4 Monthly Means,2021

2. Climate Change 2013: The Physical Science Basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5);Stocker,2013

3. Assessment of pre-industrial to present-day anthropogenic climate forcing in UKESM1

4. Three decades of global methane sources and sinks

5. US natural gas consumption prediction using an improved kernel-based nonlinear extension of the Arps decline model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3