Mobile Laboratory Investigations of Industrial Point Source Emissions during the MOOSE Field Campaign

Author:

Yacovitch Tara I.1ORCID,Lerner Brian M.1,Canagaratna Manjula R.1,Daube Conner1,Healy Robert M.2ORCID,Wang Jonathan M.2,Fortner Edward C.1,Majluf Francesca1,Claflin Megan S.1ORCID,Roscioli Joseph R.1,Lunny Elizabeth M.1,Herndon Scott C.1

Affiliation:

1. Aerodyne Research, Inc., 45 Manning Road, Billerica, MA 01821, USA

2. Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON M9P 3V6, Canada

Abstract

Industrial emissions of trace gases and VOCs can be an important contributor to air quality in cities. Disentangling different point sources from each other and characterizing their emissions can be particularly challenging in dense industrial areas, such as Detroit, Dearborn and surrounding areas in Southeast Michigan (SEMI). Here, we leverage mobile measurements of trace gases and speciated volatile organic compounds (VOCs) to identify emitting sites. We characterize their complicated emissions fingerprints based on a core set of chemical ratios. We report chemical ratios for 7 source types including automakers, steel manufacturers, chemical refineries, industrial chemical use (cleaning; coatings; etc.), chemical waste sites, compressor stations, and more. The source dataset includes visits to over 85 distinct point sources. As expected, we find similarities between the different types of facilities, but observe variability between them and even at individual facilities day-to-day. Certain larger sites are better thought of as a collection of individual point sources. These results demonstrate the power of mobile laboratories over stationary sampling in dense industrial areas.

Funder

Environmental Protection Agency

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3