Modeling Interactions of Autonomous/Manual Vehicles and Pedestrians with a Multi-Agent Deep Deterministic Policy Gradient

Author:

Hu Weichao12,Mu Hongzhang34,Chen Yanyan1,Liu Yixin5,Li Xiaosong2

Affiliation:

1. School of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China

2. Research Institute for Road Safety of the Ministry of Public Security, Beijing 100062, China

3. Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100085, China

4. School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100085, China

5. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

Abstract

This article focuses on the development of a stable pedestrian crash avoidance mitigation system for autonomous vehicles (AVs). Previous works have only used simple AV–pedestrian models, which do not reflect the actual interaction and risk status of intelligent intersections with manual vehicles. The paper presents a model that simulates the interaction between automatic driving vehicles and pedestrians on unsignalized crosswalks using the multi-agent deep deterministic policy gradient (MADDPG) algorithm. The MADDPG algorithm optimizes the PCAM strategy through the continuous interaction of multiple independent agents and effectively captures the inherent uncertainty in continuous learning and human behavior. Experimental results show that the MADDPG model can fully mitigate collisions in different scenarios and outperforms the DDPG and DRL algorithms.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference32 articles.

1. Krul, I., and Nijman, S. (2022, December 18). Voetgangers op de SEH-afdeling Oorzaken en Risicogroepen. Available online: https://www.veiligheid.nl/sites/default/files/2022-04/Voetgangers%202018%20%281%29.pdf.

2. SWOV (2022, December 18). Factsheet Voetgangers. SWOV. Available online: https://www.swov.nl/feiten-cijfers/factsheet/voetgangers.

3. The impact of waiting time and other factors on dangerous pedestrian crossings and violations at signalized intersections: A case study in Montreal;Brosseau;Transp. Res. Part F Traffic Psychol. Behaviour.,2013

4. Kalatian, A., and Farooq, B. (2019, January 27–30). Deepwait: Pedestrian wait time estimation in mixed traffic conditions using deep survival analysis. Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand.

5. Pedestrian collision avoidance system for autonomous vehicles;Schratter;SAE Int. J. Connect. Autom. Veh.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3