Analysis of Different Strategies for Lowering the Operation Temperature in Existing District Heating Networks

Author:

Neirotti Francesco,Noussan MichelORCID,Riverso Stefano,Manganini Giorgio

Abstract

District heating systems have an important role in increasing the efficiency of the heating and cooling sector, especially when coupled to combined heat and power plants. However, in the transition towards decarbonization, current systems show some challenges for the integration of Renewable Energy Sources and Waste Heat. In particular, a crucial aspect is represented by the operating temperatures of the network. This paper analyzes two different approaches for the decrease of operation temperatures of existing networks, which are often supplying old buildings with a low degree of insulation. A simulation model was applied to some case studies to evaluate how a low-temperature operation of an existing district heating system performs compared to the standard operation, by considering two different approaches: (1) a different control strategy involving nighttime operation to avoid the morning peak demand; and (2) the partial insulation of the buildings to decrease operation temperatures without the need of modifying the heating system of the users. Different temperatures were considered to evaluate a threshold based on the characteristics of the buildings supplied by the network. The results highlight an interesting potential for optimization of existing systems by tuning the control strategies and performing some energy efficiency operation. The network temperature can be decreased with a continuous operation of the system, or with energy efficiency intervention in buildings, and distributed heat pumps used as integration could provide significant advantages. Each solution has its own limitations and critical parameters, which are discussed in detail.

Funder

European Commission

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3