Abstract
This study provides design of a low-cost and open source add-on device that enhances the functionality of the popular EVOM® instrument for transepithelial/endothelial electrical resistance (TEER) measurement. The original EVOM® instrument is designed for measuring TEER in transwell samples manually using a pair of Ag/AgCl electrodes. The inconsistency in electrode placement, temperature variation, and a typically large (12–24 h) time interval between measurements result in large data variabilities. Thus, to solve the current limitation of the EVOM® instrument, we built an add-on device using a custom designed electronic board and a 3D printed electrode holder that allowed automated TEER measurements in multiple transwell samples. To demonstrate the functionality of the device prototype, we monitored TEER in 4 transwell samples containing retinal cells (ARPE-19) for 67 h. Furthermore, by monitoring temperature of the cell culture medium, we were able to detect fluctuations in TEER due to temperature change after the medium change process, and were able to correct the data offset. Although we demonstrated the use of our add-on device on EVOM® instrument only, the concept (multiplexing using digitally controlled relays) and hardware (custom data logger) presented here can be applied to more advanced TEER instruments to improve the performance of those devices.
Funder
Japan Society for the Promotion of Science
Japan Agency for Medical Research and Development
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献