Neuromorphic Robotic Platform with Visual Input, Processor and Actuator, Based on Spiking Neural Networks

Author:

Cheng Ran,Mirza Khalid B.,Nikolic KonstantinORCID

Abstract

This paper describes the design and modus of operation of a neuromorphic robotic platform based on SpiNNaker, and its implementation on the goalkeeper task. The robotic system utilises an address event representation (AER) type of camera (dynamic vision sensor (DVS)) to capture features of a moving ball, and a servo motor to position the goalkeeper to intercept the incoming ball. At the backbone of the system is a microcontroller (Arduino Due) which facilitates communication and control between different robot parts. A spiking neuronal network (SNN), which is running on SpiNNaker, predicts the location of arrival of the moving ball and decides where to place the goalkeeper. In our setup, the maximum data transmission speed of the closed-loop system is approximately 3000 packets per second for both uplink and downlink, and the robot can intercept balls whose speed is up to 1 m/s starting from the distance of about 0.8 m. The interception accuracy is up to 85%, the response latency is 6.5 ms and the maximum power consumption is 7.15 W. This is better than previous implementations based on PC. Here, a simplified version of an SNN has been developed for the ‘interception of a moving object’ task, for the purpose of demonstrating the platform, however a generalised SNN for this problem is a nontrivial problem. A demo video of the robot goalie is available on YouTube.

Publisher

MDPI AG

Subject

Artificial Intelligence,Applied Mathematics,Industrial and Manufacturing Engineering,Human-Computer Interaction,Information Systems,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Towards Spiking Control for Dielectric Elastomer Actuators;2023 11th International Conference on Control, Mechatronics and Automation (ICCMA);2023-11-01

2. Comparison and Selection of Spike Encoding Algorithms for SNN on FPGA;IEEE Transactions on Biomedical Circuits and Systems;2023-02

3. An Interface Platform for Robotic Neuromorphic Systems;Chips;2023-02-01

4. Live Demonstration: Neuromorphic Robot Goalie Controlled by Spiking Neural Network;2022 IEEE Biomedical Circuits and Systems Conference (BioCAS);2022-10-13

5. Sustainable Innovations in the Food Industry through Artificial Intelligence and Big Data Analytics;Logistics;2021-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3