Supervised Learning in Spiking Neural Networks with ReSuMe: Sequence Learning, Classification, and Spike Shifting

Author:

Ponulak Filip1,Kasiński Andrzej2

Affiliation:

1. Institute of Control and Information Engineering, Poznań University of Technology, Poznań 60-965, Poland, and Bernstein Center for Computational Neuroscience, Albert-Ludwigs University Freiburg, Freiburg 79-104, Germany

2. Institute of Control and Information Engineering, Poznań University of Technology, Poznań 60-965, Poland

Abstract

Learning from instructions or demonstrations is a fundamental property of our brain necessary to acquire new knowledge and develop novel skills or behavioral patterns. This type of learning is thought to be involved in most of our daily routines. Although the concept of instruction-based learning has been studied for several decades, the exact neural mechanisms implementing this process remain unrevealed. One of the central questions in this regard is, How do neurons learn to reproduce template signals (instructions) encoded in precisely timed sequences of spikes? Here we present a model of supervised learning for biologically plausible neurons that addresses this question. In a set of experiments, we demonstrate that our approach enables us to train spiking neurons to reproduce arbitrary template spike patterns in response to given synaptic stimuli even in the presence of various sources of noise. We show that the learning rule can also be used for decision-making tasks. Neurons can be trained to classify categories of input signals based on only a temporal configuration of spikes. The decision is communicated by emitting precisely timed spike trains associated with given input categories. Trained neurons can perform the classification task correctly even if stimuli and corresponding decision times are temporally separated and the relevant information is consequently highly overlapped by the ongoing neural activity. Finally, we demonstrate that neurons can be trained to reproduce sequences of spikes with a controllable time shift with respect to target templates. A reproduced signal can follow or even precede the targets. This surprising result points out that spiking neurons can potentially be applied to forecast the behavior (firing times) of other reference neurons or networks.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3