Affiliation:
1. Shandong Provincial Key Laboratory of Deep Oil & Gas, School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China
Abstract
Although numerous investigations have revealed the gas physisorption characteristics of porous media, the essence of physisorption behavior of gas within nanoscale space is still indistinct. We speculated that the physisorption behavior of a complex molecular system (e.g., CH4 and CO2) exhibits a quantum effect due to the confinement effect of nanopores. Gas molecules occur in varied orbitals following certain probabilities and, therefore, have separate energy levels inside a nanoscale space. Energy level transition of molecules from excited state to ground state triggers gas physisorption, while non-uniform spatial distribution of energy-quantized molecules within nanopores dominates the gas physisorption behavior. The spatial distribution of gas molecules can be adjusted by temperature, pressure and potential energy field. Based on the quantum effect, we developed a physisorption equation from the perspective of quantum mechanics to re-understand the basic principles of gas physisorption within nanopores.
Funder
National Natural Science Foundation
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献