Probabilistic Short-Term Load Forecasting Incorporating Behind-the-Meter (BTM) Photovoltaic (PV) Generation and Battery Energy Storage Systems (BESSs)

Author:

Cha Ji-WonORCID,Joo Sung-Kwan

Abstract

Increased behind-the-meter (BTM) solar generation causes additional errors in short-term load forecasting. To ensure power grid reliability, it is necessary to consider the influence of the behind-the-meter distributed resources. This study proposes a method to estimate the size of behind-the-meter assets by region to enhance load forecasting accuracy. This paper proposes a semi-supervised approach to BTM capacity estimation, including PV and battery energy storage systems (BESSs), to improve net load forecast using a probabilistic approach. A co-optimization is proposed to simultaneously optimize the hidden BTM capacity estimation and the expected improvement to the net load forecast. Finally, this paper presents a net load forecasting method that incorporates the results of BTM capacity estimation. To describe the efficiency of the proposed method, a study was conducted using actual utility data. The numerical results show that the proposed method improves the load forecasting accuracy by revealing the gross load pattern and reducing the influence of the BTM patterns.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference30 articles.

1. Short-term load forecasting using an artificial neural network

2. Improving Load Forecasting with Behind-the-Meter Solar Forecastinghttps://www.pjm.com/-/media/committees-groups/committees/oc/20190514/20190514-item-20-improving-load-forecast-with-btm-solar-forecast.ashx

3. Data-Driven Probabilistic Net Load Forecasting With High Penetration of Behind-the-Meter PV

4. Estimating Power Generation of Invisible Solar Sites Using Publicly Available Data

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3