FPGA Implementation of an Ant Colony Optimization Based SVM Algorithm for State of Charge Estimation in Li-Ion Batteries

Author:

Stighezza MattiaORCID,Bianchi ValentinaORCID,De Munari IlariaORCID

Abstract

Monitoring the State of Charge (SoC) in battery cells is necessary to avoid damage and to extend battery life. Support Vector Machine (SVM) algorithms and Machine Learning techniques in general can provide real-time SoC estimation without the need to design a cell model. In this work, an SVM was trained by applying an Ant Colony Optimization method. The obtained trained model was 10-fold cross-validated and then designed in Hardware Description Language to be run on FPGA devices, enabling the design of low-cost and compact hardware. Thanks to the choice of a linear SVM kernel, the implemented architecture resulted in low resource usage (about 1.4% of Xilinx Artix7 XC7A100TFPGAG324C FPGA), allowing multiple instances of the SVM SoC estimator model to monitor multiple battery cells or modules, if needed. The ability of the model to maintain its good performance was further verified when applied to a dataset acquired from different driving cycles to the cycle used in the training phase, achieving a Root Mean Square Error of about 1.4%.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3