Development of an Innovative Optoelectronic Nose for Detecting Adulteration in Quince Seed Oil

Author:

Mehdizadeh Saman Abdanan1ORCID,Noshad Mohammad2,Chaharlangi Mahsa3,Ampatzidis Yiannis4ORCID

Affiliation:

1. Department of Mechanics of Biosystems Engineering, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani 6341773637, Iran

2. Department of Food Science & Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani 6341773637, Iran

3. Central Laboratory, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani 6341773637, Iran

4. Southwest Florida Research and Education Center, Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA

Abstract

In this study, an innovative odor imaging system capable of detecting adulteration in quince seed edible oils mixed with sunflower oil and sesame oil based on their volatile organic compound (VOC) profiles was developed. The system comprises a colorimetric sensor array (CSA), a data acquisition unit, and a machine learning algorithm for identifying adulterants. The CSA was created using a method that involves applying a mixture of six different pH indicators (methyl violet, chlorophenol red, Nile blue, methyl orange, alizarin, cresol red) onto a Thin Layer Chromatography (TLC) silica gel plate. Subsequently, difference maps were generated by subtracting the “initial” image from the “final” image, with the resulting color changes being converted into digital data, which were then further analyzed using Principal Component Analysis (PCA). Following this, a Support Vector Machine was employed to scrutinize quince seed oil that had been adulterated with varying proportions of sunflower oil and sesame oil. The classifier was progressively supplied with an increasing number of principal components (PCs), starting from one and incrementally increasing up to five. Each time, the classifier was optimized to determine the hyperparameters utilizing a random search algorithm. With one to five PCs, the classification error accounted for a range of 37.18% to 1.29%. According to the results, this novel system is simple, cost-effective, and has potential applications in food quality control and consumer protection.

Funder

Agricultural Sciences and Natural Resources University of Khuzestan

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3