Hydration, Hyperthermia, Glycogen, and Recovery: Crucial Factors in Exercise Performance—A Systematic Review and Meta-Analysis

Author:

López-Torres Olga1ORCID,Rodríguez-Longobardo Celia2ORCID,Escribano-Tabernero Rodrigo1,Fernández-Elías Valentín E.1ORCID

Affiliation:

1. Sports Department, Faculty of Physical Activity and Sport Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain

2. Social Sciences of Physical Activity, Sport and Leisure Department, Faculty of Physical Activity and Sport Sciences, Universidad Politécnica de Madrid, 28040 Madrid, Spain

Abstract

Hyperthermia accelerates dehydration and can lead to a glycolysis malfunction. Therefore, to deeply understand the relationship between dehydration and hyperthermia during exercise, as well as in the recovery time, there might be important factors to improve athletic performance. A systematic review was carried out in different databases using the words “hydration” OR “dehydration” AND “glycogen” OR “glycogenesis” OR “glycogenolysis” AND “muscle” OR “muscle metabolism” OR “cardiovascular system” and adding them to the “topic section” in Web of Science, to “Title/Abstract” in PubMed and to “Abstract” in SPORTDiscus. A total of 18 studies were included in the review and 13 in the meta-analysis. The free statistical software Jamovi was used to run the meta-analysis (version 1.6.15). A total sample of 158 people was included in the qualitative analysis, with a mean age of 23.5 years. Ten studies compared muscle glycogen content after hydration vs. remaining dehydrated (SMD −4.77 to 3.71, positive 80% of estimates, \hat{\mu} = 0.79 (95% CI: −0.54 to 2.12), z = 1.17, p = 0.24, Q-test (Q(9) = 66.38, p < 0.0001, tau2 = 4.14, I2 = 91.88%). Four studies examined the effect of temperature on postexercise muscle glycogen content (SMD −3.14 to −0.63, 100% of estimates being negative, \hat{\mu} = −1.52 (95% CI: −2.52 to −0.53), (z = −3.00, p = 0.003, Q-test (Q(3) = 8.40, p = 0.038, tau2 = 0.68, I2 = 66.81%). In conclusion, both hyperthermia and dehydration may contribute to elevated glycogenolysis during exercise and poor glycogen resynthesis during recovery. Although core and muscle hyperthermia are the key factors in glycogen impairments, they are also directly related to dehydration.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Reference32 articles.

1. McArdle, D.W., Katch, I.F., and Katch, L.V. (2010). Nutrition, Energy, and Human Performance, Lippincott Williams & Wilkins.

2. Variation in Total Body Water with Muscle Glycogen Changes in Man;Olsson;Acta Physiol. Scand.,1970

3. Relationship between muscle water and glycogen recovery after prolonged exercise in the heat in humans;Ortega;Eur. J. Appl. Physiol.,2015

4. Hyperthermia, but not muscle water deficit, increases glycogen use during intense exercise;Hamouti;Scand. J. Med. Sci Sports.,2015

5. Aerobic exercise training increases muscle water content in obese middle-age men;Ortega;Med. Sci. Sports Exerc.,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3