Transcriptome and Small RNA Sequencing Reveals the Basis of Response to Salinity, Alkalinity and Hypertonia in Quinoa (Chenopodium quinoa Willd.)

Author:

Han Huanan1ORCID,Qu Yusen1,Wang Yingcan1,Zhang Zaijie1,Geng Yuhu1,Li Yuanyuan2,Shao Qun1,Zhang Hui1,Ma Changle1

Affiliation:

1. College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan 250014, China

2. CAS Center for Excellence in Molecular Plant Sciences, Fenglin Road 300, Shanghai 200032, China

Abstract

Quinoa (Chenopodium quinoa Willd.) is a dicotyledonous cereal that is rich in nutrients. This important crop has been shown to have significant tolerance to abiotic stresses such as salinization and drought. Understanding the underlying mechanism of stress response in quinoa would be a significant advantage for breeding crops with stress tolerance. Here, we treated the low-altitude quinoa cultivar CM499 with either NaCl (200 mM), Na2CO3/NaHCO3 (100 mM, pH 9.0) or PEG6000 (10%) to induce salinity, alkalinity and hypertonia, respectively, and analyzed the subsequent expression of genes and small RNAs via high-throughput sequencing. A list of known/novel genes were identified in quinoa, and the ones responding to different stresses were selected. The known/novel quinoa miRNAs were also identified, and the target genes of the stress response ones were predicted. Both the differently expressed genes and the targets of differently expressed miRNAs were found to be enriched for reactive oxygen species homeostasis, hormone signaling, cell wall synthesis, transcription factors and some other factors. Furthermore, we detected changes in reactive oxygen species accumulation, hormone (auxin and ethylene) responses and hemicellulose synthesis in quinoa seedlings treated with stresses, indicating their important roles in the response to saline, alkaline or hyperosmotic stresses in quinoa. Thus, our work provides useful information for understanding the mechanism of abiotic stress responses in quinoa, which would provide clues for improving breeding for quinoa and other crops.

Funder

Agricultural Fine Seed Project of Shandong Province

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3