Quality Assessment of FY-3D/MERSI-II Thermal Infrared Brightness Temperature Data from the Arctic Region: Application to Ice Surface Temperature Inversion

Author:

Chen Haihua,Meng XinORCID,Li Lele,Ni KunORCID

Abstract

The Arctic region plays an important role in the global climate system. To promote the application of Medium Resolution Spectral Imager-II (MERSI-II) data in the ice surface temperature (IST) inversion, we used the thermal infrared channels (channels 24 and 25) of the MERSI-II onboard Chinese FY-3D satellite and the thermal infrared channels (channels 31 and 32) of the Earth Observing System (EOS) Moderate-Resolution Imaging Spectroradiometer (MODIS) onboard the National Aeronautical and Space Administration (NASA) Aqua satellite for data analysis. Using the Observation–Observation cross-calibration algorithm to cross-calibrate the MERSI and MODIS thermal infrared brightness temperature (Tb) data in the Arctic, channel 24 and 25 data from the FY-3D/MERSI-II on Arctic ice were evaluated. The thermal infrared Tb data of the MERSI-II were used to retrieve the IST via the split-window algorithm. In this study, the correlation coefficients of the thermal infrared channel Tb data between the MERSI and MODIS were >0.95, the mean bias was −0.5501–0.1262 K, and the standard deviation (Std) was <1.3582 K. After linear fitting, the MERSI-II thermal infrared Tb data were closer to the MODIS data, and the bias range of the 11 μm and 12 μm channels was −0.0214–0.0119 K and the Std was <1.2987 K. These results indicate that the quality of the MERSI-II data is comparable to that of the MODIS data, so that can be used for application to IST inversion. When using the MERSI thermal infrared Tb data after calibration to retrieve the IST, the results of the MERSI and MODIS IST were more consistent. By comparing the IST retrieved from the MERSI thermal infrared calibrated Tb data with MODIS MYD29 product, the mean bias was −0.0612–0.0423 °C and the Std was <1.3988 °C. Using the MERSI thermal infrared Tb data after calibration is better than that before calibration for retrieving the IST. When comparing the Arctic ocean sea and ice surface temperature reprocessed data (L4 SST/IST) with the IST data retrieved from MERSI, the bias was 0.9891–2.7510 °C, and the Std was <3.5774 °C.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference33 articles.

1. Sensitivity of a global sea ice model to the treatment of ice thermodynamics and dynamics;Fichefet;J. Geophys. Res.,1997

2. Comparison of near-surface air temperatures and MODIS ice-surface temperatures at Summit, Greenland (2008–2013);Shuman;J. Appl. Meteorol. Climatol.,2014

3. Hall, D.K., and Riggs, G.A. (2021). MODIS/Terra Sea Ice Extent 5-min L2 Swath 1 km, Version 61. 90° N, -180° E; 60° N, 180° W, NASA National Snow and Ice Data Center Distributed Active Archive Center.

4. Arctic Ice Surface Temperature Retrieval from AVHRR Thermal Channels;Key;J. Geophys. Res.,1992

5. Sea Ice Surface Temperature Product from MODIS;Hall;IEEE Trans. Geosci. Remote Sens.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3