Cascaded U-Net with Training Wheel Attention Module for Change Detection in Satellite Images

Author:

Adil ElyarORCID,Yang Xiangli,Huang Pingping,Liu XiaolongORCID,Tan WeixianORCID,Yang Jianxi

Abstract

Change detection is an important application of remote sensing image interpretation, which identifies changed areas of interest from a pair of bi-temporal remote sensing images. Various deep-learning-based approaches have demonstrated promising results and most of these models used an encoder–decoder shape such as U-Net for segmentation of changed areas. In order to obtain more refined features, this paper introduces a change detection model with cascaded U-Net. The proposed network architecture contains four cascaded U-Nets with ConvNeXT blocks. With a patch embedding layer, the cascaded structure can improve detection results with acceptable computational overhead. To facilitate the training of the cascaded N-Nets, we proposed a novel attention mechanism called the Training whEel Attention Module (TEAM). During the training phase, TEAM aggregates outputs from different stages of cascaded structures and shifts attention from outputs from shallow stages to outputs from deeper stages. The experimental results show that our cascaded U-Net architecture with TEAM achieves state-of-the-art performance in two change detection datasets without extra training data.

Funder

National Natural Science Foundation of China

Science and Technology Research Program of Chongqing Municipal Education Commission

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Change Detection in Spectral Images: Integration of UNet and ResNet Classifiers;2023 IEEE 35th International Conference on Tools with Artificial Intelligence (ICTAI);2023-11-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3