Taylor Shepherd Golden Optimization-Enabled ResUNet for Forest Change Detection Using Satellite Images

Author:

Gite Kavita R.1ORCID,Gupta Praveen2ORCID

Affiliation:

1. Department of Computer Engineering, Chatrapati Shivaji Maharaj University, Old Mumbai - Pune Expressway, Panvel, Navi Mumbai, Maharashtra 410221, India

2. Department of CS & IT, Chatrapati Shivaji Maharaj University, Old Mumbai - Pune Expressway, Panvel, Navi Mumbai, Maharashtra 410221, India

Abstract

The pivotal task of remote sensing image (RSI) processing change detection (CD) highly aims to accurately detect changes in land cover based on multi-temporal images. With the advent of deep learning, technology has delivered remarkable results in the last years in the detection of variations in forest land cover data. Some of the conventional CD techniques are weak and are highly susceptible to errors and can result even in inaccurate outcomes. Thus, certain techniques are not desirable for real-time CD applications. To abridge this gap, this research introduces an innovative work for forest CD utilizing the proposed Taylor Shepherd Golden Optimization_ResUNet (TSGO_ResUNet) and Fuzzy Neural network (Fuzzy NN) for segment mapping. Here, the segmentation process is accomplished using ResUNet to determine the exact boundary or shape of each object for every pixel in the image. Furthermore, TSGO is achieved by consolidating Taylor Shuffled Shepherd Optimization (TSSO) with Golden Search Optimization (GSO). In addition, the devised TSGO_ResUNet + Fuzzy NN has gained maximum accuracy and kappa coefficient of 0.952 and 0.785, and minimum error rate of 0.051.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3