A Multi-Source Data Fusion Method to Improve the Accuracy of Precipitation Products: A Machine Learning Algorithm

Author:

Assiri Mazen E.ORCID,Qureshi SalmanORCID

Abstract

In recent decades, several products have been proposed for estimating precipitation amounts. However, due to the complexity of climatic conditions, topography, etc., providing more accurate and stable precipitation products is of great importance. Therefore, the purpose of this study was to develop a multi-source data fusion method to improve the accuracy of precipitation products. In this study, data from 14 existing precipitation products, a digital elevation model (DEM), land surface temperature (LST) and soil water index (SWI) and precipitation data recorded at 256 gauge stations in Saudi Arabia were used. In the first step, the accuracy of existing precipitation products was assessed. In the second step, the importance degree of various independent variables, such as precipitation interpolation maps obtained from gauge stations, elevation, LST and SWI in improving the accuracy of precipitation modelling, was evaluated. Finally, to produce a precipitation product with higher accuracy, information obtained from independent variables were combined using a machine learning algorithm. Random forest regression with 150 trees was used as a machine learning algorithm. The highest and lowest degree of importance in the production of precipitation maps based on the proposed method was for existing precipitation products and surface characteristics, respectively. The importance degree of surface properties including SWI, DEM and LST were 65%, 22% and 13%, respectively. The products of IMERGFinal (9.7), TRMM3B43 (10.6), PRECL (11.5), GSMaP-Gauge (12.5), and CHIRPS (13.0 mm/mo) had the lowest RMSE values. The KGE values of these products in precipitation estimation were 0.56, 0.48, 0.52, 0.44 and 0.37, respectively. The RMSE and KGE values of the proposed precipitation product were 6.6 mm/mo and 0.75, respectively, which indicated the higher accuracy of this product compared to existing precipitation products. The results of this study showed that the fusion of information obtained from different existing precipitation products improved the accuracy of precipitation estimation.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3