Abstract
The purpose of the paper is to evaluate the quality and hydrological utility of four popular satellite precipitation products, including the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) product (3B42V7), near real-time product (3B42RT), and the Climate Prediction Center (CPC) MORPHing technique (CMORPH) satellite–gauge merged product (CMORPH BLD) and bias-corrected product (CMORPH CRT) over Fujiang River basin, China. First, we provided a statistical assessment of the four precipitation products at multiple spatiotemporal scales. The results show that: (1) all the products except 3B42RT capture the spatial pattern of annual precipitation fairly well; (2) in general, CMORPH BLD benefits from the application of the probability density function-optimal interpolation (PDF-OI) gauge adjustment algorithm and performs best among all the products with Pearson correlation coefficients (CC) of 0.84 and 0.94, equitable threat score (ETS) of 0.56 and 0.63 in grid and basin scales, respectively, followed by 3B42V7 and CMORPH CRT; whereas 3B42RT performs worst across all the metrics; (3) according to the occurrence frequencies of rainfall, satellite estimates mainly fall into the bin of 0–1 mm/day and tend to underestimate light precipitation. In addition, the performance of all the products in warm season is much better than in cold season in both grid and basin scales. Subsequently, a physically based distributed model is established to further evaluate the hydrological utility of different precipitation products. The results reveal that: (1) the errors in precipitation products mainly propagate into hydrological simulations, resulting in the best hydrological performance in CMORPH BLD in both daily and monthly scales after recalibrating the model, while 3B42RT shows limited skills in reproducing the daily observed hydrograph; (2) after recalibrating the model with the respective satellite data, significant improvements are observed for all the products; (3) CMORPH BLD no longer shows its superiority during near-real-time monitoring of floods. There is still a great challenge for the application of current satellite-based estimates into local flood monitoring. This study could be used as guidance for choosing alternative satellite precipitation products for hydrological applications in a local community, particularly in basins in which rainfall gauges are scarce.
Subject
General Earth and Planetary Sciences
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献