Statistical and Hydrological Comparisons between TRMM and GPM Level-3 Products over a Midlatitude Basin: Is Day-1 IMERG a Good Successor for TMPA 3B42V7?

Author:

Tang Guoqiang1,Zeng Ziyue1,Long Di1,Guo Xiaolin1,Yong Bin2,Zhang Weihua3,Hong Yang4

Affiliation:

1. State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China

2. State Key Laboratory of Hydrology–Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China

3. AIRSER Lab and College of Resources and Environment, Southwest University, Chongqing, China

4. State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China, and Department of Civil Engineering and Environmental Science, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract The goal of this study is to quantitatively intercompare the standard products of the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) and its successor, the Global Precipitation Measurement (GPM) mission Integrated Multisatellite Retrievals for GPM (IMERG), with a dense gauge network over the midlatitude Ganjiang River basin in southeast China. In general, direct comparisons of the TMPA 3B42V7, 3B42RT, and GPM Day-1 IMERG estimates with gauge observations over an extended period of the rainy season (from May through September 2014) at 0.25° and daily resolutions show that all three products demonstrate similarly acceptable (~0.63) and high (0.87) correlation at grid and basin scales, respectively, although 3B42RT shows much higher overestimation. Both of the post-real-time corrections effectively reduce the bias of Day-1 IMERG and 3B42V7 to single digits of underestimation from 20+% overestimation of 3B42RT. The Taylor diagram shows that Day-1 IMERG and 3B42V7 are comparable at grid and basin scales. Hydrologic assessment with the Coupled Routing and Excess Storage (CREST) hydrologic model indicates that the Day-1 IMERG product performs comparably to gauge reference data. In many cases, the IMERG product outperforms TMPA standard products, suggesting a promising prospect of hydrologic utility and a desirable hydrologic continuity from TRMM-era product heritages to GPM-era IMERG products. Overall, this early study highlights that the Day-1 IMERG product can adequately substitute TMPA products both statistically and hydrologically, even with its limited data availability to date, in this well-gauged midlatitude basin. As more IMERG data are released, more studies to explore the potential of GPM-era IMERG in water, weather, and climate research are urgently needed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3