Variational Bayesian Approach to Condition-Invariant Feature Extraction for Visual Place Recognition

Author:

Oh JunghyunORCID,Eoh GyuhoORCID

Abstract

As mobile robots perform long-term operations in large-scale environments, coping with perceptual changes becomes an important issue recently. This paper introduces a stochastic variational inference and learning architecture that can extract condition-invariant features for visual place recognition in a changing environment. Under the assumption that a latent representation of the variational autoencoder can be divided into condition-invariant and condition-sensitive features, a new structure of the variation autoencoder is proposed and a variational lower bound is derived to train the model. After training the model, condition-invariant features are extracted from test images to calculate the similarity matrix, and the places can be recognized even in severe environmental changes. Experiments were conducted to verify the proposed method, and the experimental results showed that our assumption was reasonable and effective in recognizing places in changing environments.

Funder

National Research Foundation of Korea

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semantically Guided Feature Matching for Visual SLAM;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. Off the Radar: Uncertainty-Aware Radar Place Recognition with Introspective Querying and Map Maintenance;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

3. UW Deep SLAM-CNN Assisted Underwater SLAM;Applied Computer Systems;2023-06-01

4. A systematic literature review on long‐term localization and mapping for mobile robots;Journal of Field Robotics;2023-04-11

5. An Overview on Visual SLAM: From Tradition to Semantic;Remote Sensing;2022-06-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3