Effect of Biomimetic Surface Geometry, Soil Texture, and Soil Moisture Content on the Drag Force of Soil-Touching Parts

Author:

Salem Abouelnadar El.ORCID,Wang Hongchang,Gao Yuan,Zha XiantaoORCID,Abdeen Mohamed AnwerORCID,Zhang Guozhong

Abstract

Soil adhesion is a major problem for agricultural machinery, especially in sticky soils within the plastic range. One promising and practical way to minimize soil–tool adhesion is to modify the surface geometry to one inspired by soil-burrowing animals. In this study, 27 domed discs were fabricated according to an L27 (33) Taguchi orthogonal array and tested to determine the optimal dimensions of domed surfaces to reduce drag force. The optimized domed disc was tested in a soil bin under different soil conditions (soil texture: silty loam and sandy clay loam; soil moisture content: 23%, 30%, and 37%). All trials included a flat disc (without a dome pattern) as a control. The optimal dimensions of domed surfaces to generate the lowest possible drag force under the present experimental conditions were explored based on signal-to-noise ratio analysis. The optimal levels of control parameters were found at a surface coverage ratio of 60%, dome height of 5 mm, and dome base diameter of 20 mm. Statistics revealed that the dome height-to-diameter ratio and disc coverage ratio are crucial factors that influence the drag force of domed surfaces. In contrast, the dome base diameter had a limited influence on drag force. In all treatments, the drag force of the optimized domed disc was less than that of the flat disc (by about 9% to 25%, according to soil conditions). Accordingly, it can be concluded that adequately designed domed surfaces could significantly reduce the drag force in sticky soil compared to their flat counterparts.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference30 articles.

1. Principles of Soil Physics

2. Theoretical Analysis of the Adhesion Force of Soil to Solid Materials

3. A review of soil/tool adhesion principles and approaches to reducing limitations of disc seeders;Goshtasb,2009

4. SW—Soil and Water

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3