Research on a Novel Heat Treatment Process for Boron Steel Used for Soil-Engaging Components of Tillage Machinery

Author:

Guo Yifan1,Sun Zeyu1,Guo Shun23,Fu Jiale23

Affiliation:

1. School of Agricultural Engineering, Jiangsu University, Zhenjiang 212134, China

2. School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212134, China

3. Jiangsu Province and Education Ministry Co-Sponsored Synergistic Innovation Center of Modern Agricultural Equipment, Zhenjiang 212134, China

Abstract

To address the issue of high fracture and wear failure rates caused by the lack of toughness and abrasion resistance in the steel used for soil-engaging components of tillage machinery, a novel composite heat treatment process, “normalizing and intercritical quenching and tempering (NIQT)”, is proposed. By regulating the austenitizing heating temperature in the intercritical area (ferrite/austenite two-phase area), the type, content, and distribution of phases in the 27MnCrB5 test sample could be precisely controlled, which further influenced the mechanical properties of the material. The results demonstrated that a multiphase composite microstructure, predominantly consisting of martensite and ferrite, could be obtained in the 27MnCrB5 steel treated by the NIQT process. The results of an EBSD test indicated that the predominant type of grain boundary following the NIQT heat treatment was a high-angle grain boundary (approximately 59.5%), which was favorable for hindering crack propagation and improving the impact toughness of the material. The results of the mechanical tests revealed that, when the quenching temperature was set to 790 °C, the 27MnCrB5 steel attained excellent comprehensive mechanical properties, with a tensile strength of 1654 MPa, elongation of 10.4%, impact energy of 77 J, and hardness of 530 HV30. Compared with conventional heat treatment processes for soil-engaging components, this novel process has the potential to enhance the performance of soil-engaging components and prolong their service life.

Funder

National Natural Science Foundation of China

Project of Faculty of Agricultural Engineering of Jiangsu University

Publisher

MDPI AG

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3