Abstract
Detection of faults at the incipient stage is critical to improving the availability and continuity of satellite services. The application of a local optimum projection vector and the Kullback–Leibler (KL) divergence can improve the detection rate of incipient faults. However, this suffers from the problem of high time complexity. We propose decomposing the KL divergence in the original optimization model and applying the property of the generalized Rayleigh quotient to reduce time complexity. Additionally, we establish two distribution models for subfunctions F1(w) and F3(w) to detect the slight anomalous behavior of the mean and covariance. The effectiveness of the proposed method was verified through a numerical simulation case and a real satellite fault case. The results demonstrate the advantages of low computational complexity and high sensitivity to incipient faults.
Funder
Beidou Navigation In-orbit Support System
Subject
General Physics and Astronomy