Experimental and DEM Simulation Study on the Mechanical Characteristic and Strain Energy Evolution of Longmaxi Shale under a Confining Pressure Unloading Path

Author:

Yin Pengfei1ORCID,Yang Shengqi12ORCID,Gao Feng1,Tian Wenling2

Affiliation:

1. State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Drilling vertical and horizontal wellbores in the shale reservoir may trigger the in-situ stress release around the wellbore walls and change the original stress equilibrium state, leading the wellbores to instability. This stress change in the wellbore corresponds to the stress paths of confining pressure unloading and axial stress loading under laboratory conditions. In this paper, according to the conventional triaxial compression test results, laboratory experiments and DEM simulations by PFC2D were conducted to deeply study the strength, failure, strain energy evolution, and micro-crack damage mechanism of shale specimens under confining pressure unloading conditions. The shale specimens at different bedding inclinations were tested under different initial axial stress levels and confining pressure unloading rates, with fixed initial unloading confining pressure. This research revealed that confining pressure unloading induces greater plastic deformation, more micro-crack damage and strain energy dissipation, and a more complex failure pattern. The strain energy dissipation and dilatation under confining pressure unloading conditions are mainly induced by the generation and accumulation of tensile cracks. Moreover, the unloading rate has a significant effect on the mechanical properties, and the high unloading rate enhances the failure strength and induces more strain energy dissipation and micro tensile cracks. For the wellbore drilling in shale formations, when the buried depth and vertical stress are fixed, the lower the lateral stress is, the easier it is to form tensile failure around the wellbore wall in the drilling process, and the more induced fractures will be generated in the formation around the wellbore.

Funder

National Natural Science Foundation of China

Basic Research Program of Jiangsu Province (Natural Science Foundation) for Youth Foundation

Fundamental Research Funds for the Central Universities-Special Funds for the State Key Laboratory

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3