Fracability Evaluation in Shale Reservoirs - An Integrated Petrophysics and Geomechanics Approach

Author:

Jin Xiaochun1,Shah Subhash N.1,Roegiers Jean-Claude1,Zhang Bo1

Affiliation:

1. the University of Oklahoma

Abstract

Abstract The identification of fracture barrier is important for optimizing horizontal well drilling, hydraulic fracturing, and protecting fresh aquifer from contamination. The word "brittleness" has been a prevalent descriptor in unconventional shale reservoir characterization, but there is no universal agreement regarding its definition. Here a new definition of mineralogical brittleness is proposed and verified with two independent methods of defining brittleness. Formation with higher brittleness is considered as good fracturing candidate. However, this viewpoint is not reasonable because brittleness does not indicate rock strength. For instance, fracture barrier between upper and lower Barnett can be dolomitic limestone with higher brittleness. A new fracability index is introduced to overcome the shortcoming of brittleness by integrating both brittleness and energy dissipation during hydraulic fracturing. This fracability index considers that a good formation for hydraulic fracturing is not only of high brittleness, but also requires less energy to create a new fracture surface. Therefore, the formation with lower fracability index is considered as a fracture barrier, while with higher fracability is considered as better fracturing candidate. Logging data from one well of Barnett shale is applied (1) to verify the principle of new brittleness and fracability index model; (2) and to demonstrate the process of screening hydraulic fracturing candidates employing fracability index model.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3