Complete Coverage Path Planning Based on Improved Genetic Algorithm for Unmanned Surface Vehicle

Author:

Wu Gongxing1ORCID,Wang Mian1,Guo Liepan2

Affiliation:

1. College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China

2. Merchant Marine College, Shanghai Maritime University, Shanghai 201306, China

Abstract

Complete Coverage Path Planning (CCPP) is a key technology for Unmanned Surface Vehicles (USVs) that require complete coverage on the water surface, such as water sample collection, garbage collection, water field patrol, etc. When facing complex and irregular boundaries, the traditional CCPP-based boustrophedon method may encounter many problems and challenges, such as multiple repeated regions, multiple turns, and the easy occurrence of local optima. The traditional genetic algorithm also has some shortcomings. The fixed fitness function, mutation operator and crossover operator are not conducive to the evolution of the population and the production of better offspring. In order to solve the above problems, this paper proposes a CCPP method based on an improved genetic algorithm, including a stretched fitness function, an adaptive mutation operator, and a crossover operator. The algorithm combines the key operators in the fireworks algorithm. Then, the turning and obstacle avoidance during the operation of the Unmanned Surface Vehicle are optimized. Simulation and experiments show that the improved genetic algorithm has higher performance than the exact unit decomposition method and the traditional genetic algorithm, and has more advantages in reducing the coverage path length and repeating the coverage area. This proves that the proposed CCPP method has strong adaptability to the environment and has practical application value in improving the efficiency and quality of USV related operations.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference36 articles.

1. Research Review on Mission Planning of Multiple Unmanned Aerial Vehicles under Multiple Constraints;Qi;J. Intell. Syst.,2020

2. Path planning for clean robots based on complete-area coverage;Wang;Electron. Sci. Technol.,2017

3. Path planning for multiple mobile robots under double-warehouse;Ma;Inf. Sci.,2014

4. Path planning of full-area grain harvesting robot based on genetic improved artificial potential field method;Jiang;Trans. Chin. Soc. Agric. Mach.,2015

5. Coverage Path Planning for UAVs Photogrammetry with Energy and Resolution Constraints;Buttazzo;J. Intell. Robot. Syst.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3